

FEDERAL MINISTRY OF EDUCATION

National Technical Certificate (NTC) Curriculum in

ROBOTICS ENGINEERING CRAFT

February, 2025

Innovation Development and Effectiveness in the Acquisition of Skills (IDEAS) Project

Funded by IDEAS project

THE WORLD BANK

NATIONAL BOARD FOR TECHNICAL EDUCATION

Plot B, Bida Road, P.M.B. 2239, Kaduna, Nigeria

CURRICULUM AND MOUDULE SPECIFICATIONS

IN

ROBOTICS ENGINEERING CRAFT

FEBRUARY, 2025

GENERAL INFORMATION

AIM

To provide training and impart the necessary skills to produce skilled personnel capable of integrating into the Robotics and Automation sector as technicians and self-reliant entrepreneurs.

ENTRY QUALIFICATIONS

Craft Programme

Candidates must be at least 14 years old and have successfully completed three years of Junior Secondary Education or its equivalent. Special consideration may be given to candidates with trade test certificates and relevant experience.

Candidates should possess the National Technical Certificate (NTC) or its equivalent and should have a minimum of two years post-qualification cognate industrial experience.

The Curriculum

The curriculum of each programme is divided into three key components:

- a. General Education, which accounts for 30% of the total hours required for the programme.
- b. Trade Theory, Trade Practice and Related Studies which account for 65% and,
- c. Supervised Industrial Training/Work Experience which accounts for about 5% of the total hours required for the programme. This component of the course, which can be completed in industry or within the College production unit, is compulsory for full-time students.

Included in the curriculum are the teacher's activity and learning resources required for the guidance of the teacher. Unit Course/Modules

A course/module is defined as a body of knowledge and skills capable of being utilized on its own or as a foundation or pre-requisite knowledge for more advanced work in the same or other fields of study. Each trade course/ module when successfully completed can be used for employment purposes.

Behavioural Objectives

These are educational objectives, which identify precisely the type of behaviour a student should exhibit at the end of a course/module or programme. Two types of behavioural objectives have been used in the curriculum. They are:

- a. General Objectives
- b. Specific Learning Outcomes

General objectives are concise statements of the expected behaviours students should exhibit upon completion of a unit or module, such as understanding the principles and applications of:

- a Robotics Fundamentals
- b Sensors and Actuators
- c Programming and Automation

Specific learning outcomes are statements that detail the precise behaviors and skills students should demonstrate after completing the educational process, expressed through practical tasks and associated knowledge to ascertain that the general objectives of course/ programme have been achieved. They are more discrete and quantitative expressions of the scope of the tasks contained in a teaching unit.

General Education in Technical Colleges

The General Education component of the curriculum aims at providing the trainee with knowledge in critical subjects like English Language, Mathematics, Economics, Physics, Chemistry, Biology, Entrepreneurial Studies and Mathematics, etc. to enhance the understanding of machines, tools and materials of their trades and their application as a foundation for post-secondary technical education for the above average trainee. Hence, it is hoped that trainees who successfully complete their trade and general education may be able to compete with their secondary school counterparts for direct entry into Universities, Polytechnics or Colleges of Education (Technical) for degree, ND or NCE courses respectively.

For the purpose of certification, only the first three courses in mathematics will be required. The remaining modules are optional and are designed for the above average students.

National Certification

The NTC programmes are run by Technical Colleges accredited by NBTE. NABTEB conducts the final national examination and awards certificates.

Trainees who successfully complete all the specified courses/modules and pass the national examinations in their trade will be awarded the following certificate:

S/NO	LEVEL	CERTIFICATE
	Technical Programme	
1.	NTC	National Technical Certificate

Guidance Notes For Teacher implementing the Curriculum

The number of hours specified in the curriculum table may be adjusted to suit the institution's timetable, provided the course content is fully covered and goals and objectives of each module are achieved at the end of the term.

The maximum duration of any module in the new scheme is 300 hours. This means that for a term of 15 weeks, the course should be offered for 20 hours a week. This can be scheduled in sessions of 4 hours in a day leaving the remaining hours for general education. However, properly organized and if there are adequate resources, most of these courses can be offered in two sessions a day, one in the morning and the other one in the afternoon. In so doing, some of these programmes may be completed in lesser number of years than at present.

The sessions of 4 hours include the trade theory and practice. It is left to the teacher to decide when the class should be held in the workshop or in a lecture room.

Teachers are encouraged to integrate both theoretical and practical aspects of robotics in their lesson plans. A minimum of 30% of the total teaching hours should be allocated for hands-on activities. Teachers should use modern teaching aids and practical tools to ensure students can relate theory to real-world applications.

INTEGRATED APPROACH IN THE TEACHING OF TRADE

Theory, Trade Science and Trade Calculation

The traditional approach of teaching trade science and trade calculation as separate and distinct subjects in Technical College programmes is not relevant to the new programme as it will amount to a duplication of the teaching of mathematics and physical science subjects in the course. The basic concepts and principles in mathematics and physical science are the same as in the trade calculation and trade science. In the new scheme therefore, qualified persons in these fields will teach mathematics and physical science and the instructors will apply the principles and concepts in solving trade science and calculation problems in the trade theory classes. To this end, efforts have been made to ensure that mathematics and science modules required to be able to solve technical problems were taken as pre-requisite

Evaluation of Programme/Module

For the programme to achieve its objectives, any course started at the beginning of a term must terminate at the end of the term. Instructors should therefore device methods of accurately assessing the trainees to enable them give the student's final grades at the end of the term. A national examination will be taken by all students who have successfully completed their modules. The final award will be based on the aggregate of the scores attained in the course work and the national examination.

PROGRAMME: NATIONAL TECHNICAL CERTIFICATE IN ROBOTICS ENGINEERING CRAFT.

GOAL: The Robotics Engineering Craft Programme is designed to equip trainees with the knowledge and skills needed to design, build, maintain, and troubleshoot robotic systems. Graduates of this programme will be capable of integrating mechanical, electronic, and programming principles to create automated solutions for industrial and commercial applications. The program also emphasizes creativity, problem-solving abilities, and entrepreneurship skills to enable graduates to succeed in the evolving robotics field.

CURRICULUM TABLE AND COURSE HOURS/WEEK PROGRAMME: NATIONAL TECHNICAL CERTIFICATE

Module	MODULE			YE	AR I					YE	AR 2					YE	AR 3			TOTAL
Code		Ter	rm 1	Tei	rm 2	Те	rm 3	Те	rm 1	Tei	rm 2	Те	rm3	Te	erm 1	Te	rm 2	Tei	rm 3	HOURS
		Т	Р	Т	Р	Т	Р	Т	Р	Т	Р	Т	Р	Т	Р	Т	Р	Т	Р	
CAM 12 - 15	Mathematics	2	-	2	-	2	-	2	-	2	-	2	-	2	-	2	-	2	-	216
CEN 11 - 17	English	2	-	2	-	2	-	3	-	3	-	3	-	3	-	3	-	3	-	288
CPH 10 - 12	Physics	2	-	2	-	2	-	2	1	2	1	2	1	2	1	2	1	2	1	288
CCH 10 - 12	Chemistry	2	-	2	-	2	1	2	1	2	1	2	1	2	1	2	1	2	1	288
CEC 11 - 13	Economics	2	-	2	-	2	-	2	-	2	-	2	-	2	-	2	-	2	-	216
CBM 11	Entrepreneurship	-	-	-	-	-	-	2	-	2	-	2	-	-	-	-	-	-	-	72
ICT 11 - 15	Computer Studies	-	-	-	-	-	-	1	2	1	2	1	2	1	2	1	2	-	-	180
CRB 111	Introduction to Robotics	4	2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	72
-	Mathematical Foundation of Robotics	4	2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	72
CRB 123	Introduction to Programming (Arduino C++) for Robotics	-	-	2	4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	72
	Basic electronics for Robotics	-	-	-	-	2	4	-	-	-	-	-	-	-	-	-	-	-	-	72
CRB 215	Basic Sensors and Interfacing for Robotics	-	-	-	-	-	-	2	4	-	-	-	-	-	-	-	-	-	-	72
CRB 226	Introduction to Kinematics	-	-	-	-	-	-	-	-	2	4	-	-	-	-	-	-	-	-	72

CBR 237	Introduction to Robot Control Systems	-	-	-	-	-	-	-	-	-	-	2	4	-	-	-	-	-	-	72
CBR 318	Computer Vision Basics	-	-	-	-	-	-	-	-	-	-	-	-	2	4	-	-	-	-	72
CBR 329	Basics of Motion Planning & Go-To Goal	-	-	-	-	-	-	-	-	-	-	-	-	-	-	2	4	-	-	72
CBR 330	CAD Design & 3D Printing for Robotics	-	-	-	-	-	-	-	-	-	-	-	-	-	-	2	4	-	-	72
Total		18	4	7	4	2	5	16	4	16	8	16	8	14	8	16	12	11	2	4272

Contents

CURRICULUM TABLE AND COURSE HOURS/WEEK PROGRAMME: NATIONAL TECHNICAL CERTIFICATE	vi
MODULE 1: Introduction to Robotics	1
MODULE 2: Mathematical Foundation of Robotics	5
MODULE 3: Introduction to Programming (Arduino C++) for Robotics	8
MODULE 4: Basic electronics for Robotics	16
MODULE 5: Basic Sensors and Actuators Interfacing for Robotics	21
Module 6: Introduction to Kinematics	25
Module 7: Introduction to Robot Control Systems	29
MODULE 8: Computer Vision Basics	35
MODULE 9.0: Basics of Motion Planning and Go-To Goal	39
MODULE 10: CAD Design and 3D Printing for Robotics	43
LIST OF EQUPMENT	46

MODULE 1: Intro	duction to Robotics		COURSE CODE: CRB111	CONTACT HOUR 72
YEAR: 1	TERM: 1	PREREQUISITE:	Theoretical: 48 Hours	
			Practical: 24 Hours	
GOAL: This mod	ule is designed to introduce t	he trainee to develop basic knowle	dge of robotics	
GENERAL OBJECT	IVES: this module, the trainee sho	uld be able to:		
1.0 Know the hist	ory of robots and their applic	ation		
2.0 Know the clas	sifications of Robots			
3.0 Know the Bas	ic components of Robots			
	I and societal impacts of robo			

MODU	ILE 1: Introduction to Robotics			COURSE CODE: CRB111	CONTACT HOUR	S:				
YEAR:			PREREQUISITE: Theoretical: 48 Hours Practical: 24 Hours							
GOAL:	This module is designed to introd	uce the trainee to develo	p basic knowled	ge of Robotics						
	Theoretica	l Content		P	Practical Content					
GENE	RAL OBJECTIVE 1.0: Know the histor	ry of robots and their app	lication							
Wee	Specific Learning Outcome	Teachers Activities	Learning	Specific Learning	Teachers Activities	Learning				
k			Resources	Outcome		Resources				
1-3	1.1 Explain the origins and	Present a timeline of	Timeline							
	evolution of robotics.	robotics history using	Posters,							
		slides or posters.	Documentar							
	1.2 Identify key milestones in		y Videos							
	robotics history (e.g., first	Show videos of early	(e.g., "Rise of							
	industrial robot, modern	robots (e.g., Unimate)	the Robots"),							
	advancements).	and modern robots	Books on							
		(e.g., Boston	Robotics							
	1.3 Define a Robot	Dynamics).	History							
	1.4 Identify the applications of	Assign students to								
	robots in industries like	research and present a								
	manufacturing, healthcare,	key milestone in								
	agriculture, and space	robotics history.								
	exploration.									
G	ENERAL OBJECTIVE 2.0: Know the o	classification of Robots	•							
Wee	Specific Learning Outcome	Teachers Activities	Learning	Specific Learning	Teachers Activities	Learning				
k			Resources	Outcome		Resources				
4-6	2.1 Differentiate between types	Use examples to	Infographics							
	of robots:	explain different types	on Robot							
	- Industrial robots (e.g., robotic	of robots (e.g.,	Types, IEEE							
	arms).	industrial, service,	Robotics							
	- Service robots (e.g., vacuum	medical).	Reports,							
	cleaners, delivery robots).		YouTube							

	 Medical robots (e.g., surgical robots). Autonomous robots (e.g., self-driving cars). Humanoid robots (e.g., 	Organize a group activity where students classify robots based on their functions.	Videos on Robot Categories			
	ASIMO, Sophia). 2.2 Explain the criteria for classification (e.g., mobility, autonomy, application).					
	2.3 Identify the examples of robots in each category.					
	ENERAL OBJECTIVE 3.0: Know the I					1
Wee k	Specific Learning Outcome	Teachers Activities	Learning Resources	Specific Learning Outcome	Teachers Activities	Learning Resources
7-9	 3.1 Describe the core components of a robot: Mechanical: Chassis, joints, actuators (motors, servos). Electrical: Power supply, sensors (IR, ultrasonic, IMU), microcontrollers (Arduino, Raspberry Pi). Software: Control algorithms, feedback loops, programming languages (C++, Python). 3.2 Discuss the functions of each component of a robot 	Show a disassembled robot or robot kit and explain each component (e.g., motors, sensors, microcontrollers). Assign students to label the components of a robot diagram.	3D Diagrams of Robot Parts, Physical Robot Models, Interactive Slides	3.1 Identify the components of Robot3.2 Assemble a basic robot using these components	Show a disassembled robot or robot kit and explain each component. Assign students to assemble the components of a robot using the provided kit.	Disassembl ed Robot Kit, Microcontr ollers, Motors, Sensors, Actuators

G	ENERAL OBJECTIVE 4.0: Discuss eth	nical and societal impacts	of robotics.		1	1
Wee	Specific Learning Outcome	Teachers Activities	Learning	Specific Learning Outcome	Teachers Activities	Learning
k			Resources			Resources
10-	4.1 Discuss the ethical	Facilitate a debate on	Debate			
12	implications of robotics (e.g.,	the ethical	Topics, Case			
	job displacement, privacy	implications of	Studies (e.g.,			
	concerns).	robotics (e.g., job	Ethics of AI),			
		displacement, privacy	Research			
	4.2 Explain the concept of robot	concerns).	Papers			
	rights and responsibilities.					
		Assign students to				
	4.3 Describe the impacts of	write a short essay on				
	robots in agriculture.	the societal benefits of				
		robotics				
	4.4 Analyze the societal benefits					
	of robotics (e.g., improved					
	healthcare, disaster response).					
	4.5 Discuss the future of					
	robotics and its potential impact					
	on humanity					

PROGRAMME: NATION	AL TECHNICAL CERT	IFICATE IN ENGINEERING CRAFT PF	RACTICE			
MODULE 2: Mathematica	l Foundation of Rob	otics		COURSE CODE: CRB112	CONTACT	HOURS:
					72	
YEAR: 1	TERM: 1	PREREQUISITE:	Tł	neoretical: 48 Hours		
				Practical: 24 Hours		
GOAL: This module is de	signed to equip stud	lents with the mathematical tools	necessary fo	or understanding and designing re	obotic systems.	
GENERAL OBJECTIVES:						
On completion of this mod	dule, the trainee sho	uld be able to:				
1.0 Understand and apply	coordinate systems	and transformations.				
2.0 Learn the basics of line	ear algebra for robot	ics.				
3.0 Develop skills in kinem	atics for robot motion	on.				
4.0 Understand the princip	ples of dynamics and	l control.				

MODU	JLE 2: Mathematical Foundation	of Robotics		COURSE CODE: CRB112	CONTACT HOURS:	
YEAR:	1 TERM:	1	PREREQUISITE	:	Theoretical: 24 Hours	
					Practical: 48 Hours	
GOAL	This module is designed to equ	p students with the mathe	matical tools ne	cessary for understanding an	d designing robotic syster	ns.
		ical Content			ectical Content	
GENE	RAL OBJECTIVE 1.0: Understand	and Apply Coordinate Syste	ems and Transfo	rmations		
Wee	Specific Learning Outcome	Teachers Activities	Learning	Specific Learning	Teachers Activities	Learning
k			Resources	Outcome		Resources
1-3	1.1 Define 2D and 3D	Show animations of	Graph Paper,	1.1 Identify 2D and 3D	Use physical models to	2D and 3D
	coordinate systems.	2D and 3D frame	Digital	coordinate systems	demonstrate	wooden or
		transformations.	Simulations		coordinate systems.	paper
	1.2 Differentiate between 2D		(GeoGebra),	1.2 Demonstrate the use of		models.
	and 3D coordinate systems.	Give examples of	Animated	2D and 3D coordinate	Use picking an object	
		applications of 2D and	Videos on	systems in Robotics	to demonstrate how	Any Objects
	1.3 Relate 2D and 3D	3D coordinate systems	Transformati		2D and 3D	
	coordinate systems to Robotic	to Robotics	ons		transformation is	
					carried out	
G	ENERAL OBJECTIVE 2.0: Learn the	e basics of linear algebra fo	or robotics.			
Wee	Specific Learning Outcome	Teachers Activities	Learning	Specific Learning	Teachers Activities	Learning
k			Resources	Outcome		Resources
4-6	2.1 Define a vector	Teach vector and	Books (e.g.,			
		matrix operations	"Linear			
	2.2 Describe how matrix is	using simple	Algebra for			
	formed from vectors	examples.	Robotics"),			
	2.3 Explain linear geometry	Discuss linear	Examples,			
		geometry using	Practice			
	2.4 Describe robot motion and	examples	Worksheets			
	transformations using linear					
	algebra	Provide exercises for	Calculators			

		students to practice solving linear				
		equations and				
		matrices				
G	ENERAL OBJECTIVE 3.0: Develop sk	kills in kinematics for robo	ot motion.			r
Wee	Specific Learning Outcome	Teachers Activities	Learning	Specific Learning Outcome	Teachers Activities	Learning
k			Resources			Resources
7-9	3.1 Define forward and inverse	Walk students through	Motion	3.1 Demonstrate how	Use physical models to	Robot Arm
	kinematics.	the derivation of	Analysis	forward and inverse	demonstrate forward	Demo
		forward kinematics for	Videos,	kinematics can be achieved	and inverse kinematics	Models
	3.2 Describe body fixed frame	a 2-link planar arm.		using Body fixed frame and		
	and World frame.		Robot Arm	World frame.		
		Assign practice	Demo			
	3.3 Discuss how forward and	problems for students	Models			
	inverse kinematics can be	to solve.				
	achieved using Body fixed					
	frame and World frame.					
G	ENERAL OBJECTIVE 4.0: Understan	d the principles of dynam	nics and control			
Wee	Specific Learning Outcome	Teachers Activities	Learning	Specific Learning Outcome	Teachers Activities	Learning
k			Resources			Resources
10-	4.1 Understand the basics of	Use examples (e.g., a	Interactive	4.1 Simulate a pendulum or	Use examples (e.g., a	Robotic
12	Newtonian mechanics (forces,	pendulum or rolling	Control	rolling ball to demonstrate	pendulum or rolling	Arm Kit,
	torque, inertia).	ball) to explain	System	dynamics.	ball) to explain	Protractors
		dynamics.	Models, PID		dynamics.	, Measuring
	4.2 Derive the equations of		Controller			Tools,
	motion for simple systems.		Videos,			
			Books on			
	4.3 Explain the concept of		Robotics			
	feedback control and its		Control			
	importance in robotics.					

PROGRAMME: N	ATIONAL TECHNICAL CERT	IFICATE IN ENGINEERING CRAFT PR	ACTICE					
MODULE 3: Introd	luction to Programming (A	rduino C++) for Robotics	COURSE CODE: CRB123	CONTACT 72	HOURS:			
YEAR: 1	TERM: 2	PREREQUISITE:	Theoretical: 24 Hours Practical: 48 Hours					
GOAL: This module	e is designed to equip stude	ents with foundational knowledge c	of the Arduino platform (C++ programming).					
1. Understand 2. Learn the fu	nis module, the trainee sho	platform and its components. mming for Arduino.						
•	lebug code for basic roboti							

MODU	JLE 3: Introduction to Program	ning (Arduino C++) for Robo	otics	COURSE CODE: CRB123	CONTACT HOURS:	72
YEAR:	1 TERM	2	PREREQUISITI	E:	Theoretical: 24 Hours Practical: 48 Hours	
GOAL	This module is designed to equ	ip students with foundatio	nal knowledge o	f the Arduino platform (C++	programming)	
		tical Content			actical Content	
GENE	RAL OBJECTIVE 1.0: Understand	the basics of the Arduino p	latform and its o	components.		1
Wee k	Specific Learning Outcome	Teachers Activities	Learning Resources	Specific Learning Outcome	Teachers Activities	Learning Resources
1-3	 1.1 Explain the Arduino Uno hardware, including the microcontroller, ports, power supply, and other key components. 1.2 Explain the functions of digital and analogue pins, and their role in input/output operations. 1.3 Explain the Arduino IDE software, including its feature such as the code editor, serial monitor, and tools for compiling and uploading code 1.4 Explain the role of librarie in extending Arduino functionality. 1.5 Troubleshoot common hardware and software issues 		Arduino Board Diagrams, Introduction to Microcontrol lers Video	 1.1 Identify the main components of an Arduino board (e.g., microcontroller, pins, power supply). 1.2 Setup (Download and Install) the Arduino IDE. 1.3 Upload a simple sketch (e.g., blink an LED) to the Arduino Board. 	Guide the students to be able to identify the parts on Arduino Board. Guide students to download and install Arduino IDE	Arduino Kits, Breadboard s, Jumper Wires, Resistors

	including incorrect pin					
	connections, compilation					
	errors, and faulty components.					
G	ENERAL OBJECTIVE 2.0: Learn and	apply the fundamentals	of C++ program	ming to develop and control	embedded systems using	g the Arduino
p	atform					
Wee k	Specific Learning Outcome	Teachers Activities	Learning Resources	Specific Learning Outcome	Teachers Activities	Learning Resources
4-6	2.1 Explain basic C++ syntax,	Discus basic C++	Coding	2.1 Design a basic	Guide students to	Laptops,
	including variables, data types,	syntax	Worksheets,	calculator using C++ code	design a basic	Arduino
	and operators, and their		Interactive		calculator using C++	IDE,
	purpose in building functional	Discuss basic	Tutorials	2.2 Write and upload a	code	Arduino
	code.	programming	(Codecadem	simple Arduino program		Board
		concepts using simple	у,	(e.g., blink an LED, control	Guide students to	
	2.2 Write basic C++ syntax by	examples (e.g.,	Arduino.cc)	a servo).	write and upload a	Other
	creating simple programs using	blinking an LED).			simple Arduino	accessories
	variables, data types, and			2.3 Use function to	program	
	operators.	Discuss control		modularize code		
		structures			Guide students to use	
	2.3 Explain control structures				function to modularize	
	(e.g., if-else, switch-case, loops)	Discuss functions and			code	
	and their role in decision-	how to modularize				
	making and repetition in programming	code				
		Describe arrays and				
	2.4 Define functions in C++ and	strings				
	explain their importance in					
	creating modular, reusable	Discuss the basics of				
	code.	object-oriented				
		programming.				
	2.5 Call functions in C++ to					
	modularize and structure code					
	effectively					

G	 2.6 Explain arrays and strings as data structures used for storage and manipulation of information in C++ programmes 2.7 Explain the basics of objectoriented programming (e.g., classes, objects) and their relevance to organizing code in C++ for Arduino applications. ENERAL OBJECTIVE 3.0: Develop sk 	ills in interfacing sensors	and actuators	with Arduino.		
Wee	Specific Learning Outcome	Teachers Activities	Learning	Specific Learning Outcome	Teachers Activities	Learning
k	Specific Learning Outcome	reachers Activities	Resources	Specific Learning Outcome	reachers Activities	Resources
7-9	 3.1 Explain the functionality, types, and examples of sensors and actuators used in embedded systems. 3.2 Differentiate between sensors and actuators, focusing on their roles in Arduino-controlled systems (input vs. output). 3.3 Differentiate between digital and analogue sensors, and provide examples of each type in practical applications. 3.4 Explain how sensors are connected and programmed to trigger actuators in an Arduino 	Discuss sensors, actuators and differentiate between them. Discuss the wiring diagram of sensors and actuators	Sensor Datasheets, Circuit Connection Posters, Breadboard Wiring Charts	 3.1 Read data from digital and analog sensors (e.g., IR sensors, ultrasonic sensors). 3.2 Control actuators (e.g., motors, servos) using PWM signals. 3.3 Interface with common communication protocols (e.g., I2C, SPI). 3.4 Troubleshoot and debug sensor and actuator connections. 	Demonstrate how to connect and read data from sensors. Supervise students as they build and test their circuits.	IR Sensors, Ultrasonic Sensors, Servo Motors, LEDs

	system, focusing on signal					
	processing and control flow.					
G	ENERAL OBJECTIVE 4.0: Write and	debug code for basic rob	otic tasks.			
Wee	Specific Learning Outcome	Teachers Activities	Learning	Specific Learning Outcome	Teachers Activities	Learning
k			Resources			Resources
10-	4.1 Explain the structure of a	Provide an overview	Projector to	4.1 Write code to control a	Guide students in	Serial
12	basic Arduino sketch.	of the structure of an	display	robot's movement (e.g.,	writing code for tasks	Monitor,
		Arduino sketch,	Arduino IDE.	forward, backward, turn).	(e.g., line-following,	Arduino
		explaining the purpose of the setup() and loop() functions.	Pre-made simple Arduino	4.2 Implement basic feedback control using		IDE
	4.2 Write a simple program to control a motor.	Create a basic sketch on the Arduino IDE, demonstrating how to	sketch for demonstrati	sensor data (e.g., line- following, obstacle avoidance).	their code and help them debug errors.	
	4.3 Write code to process sensor	use the setup()	on.			
	input and make decisions.	function to configure input/output pins and	Arduino Uno and laptop	4.3 Debug code using serial monitoring and print		
	4.4 Debug a program using the Arduino IDE serial monitor.	the loop() function to repeat actions.	for coding demo.	statements		
	4.5 Write a program to control the movement of a simple robot.	Explain how to connect a DC motor to an Arduino board	motor driver (L298N), DC motor,			
	4.6 Test and troubleshoot robotic code.	using a motor driver (e.g., L298N) and how to control motor	jumper wires.			
		speed and direction	Step-by-step			
		using digital output	guide on			
		pins.	motor			
			control with			
		Guide students in	Arduino.			
		writing a simple				
		program to control the				

motor's speed and	Arduino IDE
direction.	for coding.
Provide students with an Arduino board,	Light sensor (or distance
motor driver, and motor to implement and test their code.	sensor) Sensor datasheets
Introduce sensors	for
(e.g., light or distance	reference.
sensors), explaining how to read analog or digital values from the sensors using the Arduino board.	Pre-written example code for sensor input processing.
decisions (e.g., turning a motor on or off based on sensor readings). Introduce the serial monitor in the Arduino IDE and explain its importance for debugging	Two- wheeled robot kit (Arduino, motor driver, wheels, sensors). Guide on how to assemble the robot. Sample Arduino code for robotic movement.

·			 	
	Run a faulty program,	Two-		
	demonstrating how to	wheeled		
	use the serial monitor	robot kits		
	to print sensor values	(Arduino,		
	and diagnose the	sensors,		
	issue.	motors).		
	Introduce the concept	Debugging		
	of robotic movement	guide for		
	(e.g., a two-wheeled	common		
	robot) and explain	robotic		
	how sensors and	issues (e.g.,		
	motors work together	wrong		
	to control movement	sensor		
	(e.g., obstacle	readings,		
	avoidance or line	motor		
	following).	control		
		problems).		
	Guide students			
	through writing a full	Arduino IDE		
	programme to control	for real-time		
	a two-wheeled robot,	testing.		
	using sensor input to			
	make the robot move,			
	stop, or change			
	direction.			
	Supervise the testing			
	of each group's robot,			
	providing feedback			
	and asking students to			
	identify any issues			
	with robot behaviour.			

tro teo ch co res	emonstrate common oubleshooting ichniques, such as necking sensor onnections, viewing motor
wi se	viewing motor iring, and using the erial monitor to ebug logic errors.

WODULE 4: Basic	c electronics for Robotics		COURSE CODE: CRB134	CONTACT HOURS
				72
YEAR: 1	TERM: 3	PREREQUISITE:	Theoretical: 24 Hours	
			Practical: 48 Hours	
GOAL: This mod	lule is designed to provide stu	Idents with a foundational understa	nding of electronics, enabling them to design	, build, and troubleshoot
circuits for roboti	ic systems.			
GENERAL OBJECT	TIVES:			
	f this module, the trainee sho	uld be able to:		
On completion o	,			
·	he fundamental concepts of e	electricity and electronics.		
1.0 Understand t		•		
1.0 Understand t 2.0 Learn to use l	he fundamental concepts of e	n robotic circuits.		
1.0 Understand t 2.0 Learn to use l 3.0 Develop skills	he fundamental concepts of e basic electronic components i	n robotic circuits. uit diagrams.		

MODULE 4: Basic electronics for Robotics				COURSE CODE: CRB134		CONTACT HOURS:	
	TERM:	e students with a foundat	PREREQUISIT		Prac	etical: 24 Hours ctical: 48 Hours o design, build, and	l troubleshoot
circuits	for robotic systems. Theoretica	l Content			Practica	l Content	
GENER/	AL OBJECTIVE 1.0: Understand the	Fundamental Concepts o	of Electricity and	d Electronics			
Week	Specific Learning Outcome	Teachers Activities	Learning Resources	Specific Learning Outcome	Teac	hers Activities	Learning Resources
1-2	 1.1 Define voltage, current, resistance, and power, and understand their relationships (Ohm's Law). 1.2 Explain the difference between AC and DC circuits. 1.3 Explain the concept of electrical ground and its importance in circuits. 1.4 Calculate power consumption and heat dissipation in electronic components. 1.5 Describe the role of semiconductors in modern electronics. 	Use a multimeter to demonstrate how to measure voltage, current, and resistance and the relationship with ohms law. Provide simple circuit examples to explain Ohm's Law. Perform practical experiments to measure power and heat in simple circuits. Explain how semiconductors are used in robotic systems (e.g.,	Books (e.g., "Electronics for Dummies"), Circuit Diagrams, Interactive Physics Simulations	 1.1 Build a simple circuit (e.g., LED with a resistor) and measure voltage, current, and resistance using a multimeter. 1.2 Calculate power consumption in a circuit using Ohm's Law 	multi meas curre resist Guide how volta resist law. Provi exam	e student to use a imeter to sure voltage, ent, and tance. e students on to calculate oge, current and tance using ohms ide simple circuit nples to explain 's Law.	Multimeters, Power Supplies, Circuit Components

	electronic components	sensors).				
		Build simple series and				
		parallel circuits to				
		demonstrate the				
		differences in voltage				
		and current				
		distribution.				
GE	NERAL OBJECTIVE 2.0: Learn to Us	e Basic Electronic Compo	nents in Roboti	c Circuits		
Week	Specific Learning Outcome	Teachers Activities	Learning	Specific Learning	Teachers Activities	Learning
			Resources	Outcome		Resources
3-5	2.1 Identify and use resistors,	Show physical	Hands-on	2.1 Build circuits using	Show physical	Breadboards,
	capacitors, and inductors in	components (e.g.,	Circuit Kits,	resistors, capacitors, and	components (e.g.,	Resistors,
	circuits.	resistors, capacitors,	LED Circuit	LEDs (e.g., LED blink, RC	resistors, capacitors,	Capacitors,
		LEDs) and explain their	Demonstrati	circuit).	LEDs) and explain their	Transistors, ICs
	2.2 Understand the function	functions.	ons, Online		functions.	
	and use of diodes and LEDs.		Resistor	2.2 Test the functionality of		
		Supervise students as	Calculators	each component in the	Supervise students as	
	2.3 Work with transistors (e.g.,	they build simple		circuit.	they build and test	
	BJT, MOSFET) as switches and	circuits (e.g., LED			their circuits	
	amplifiers.	blink).				
	2.4 Use integrated circuits (ICs)					
	such as voltage regulators and					
	motor drivers.					
	2.5 Understand the role of					
	sensors (e.g., IR, ultrasonic) and					
	actuators (e.g., motors, servos)					
	in robotics.					

Neek	Specific Learning Outcome	Teachers Activities	Learning	Specific Learning Outcome	Teachers Activities	Learning
			Resources			Resources
-8	3.1 Explain schematic diagrams	Discuss diagrams with	Circuit	3.1 Read and interpret	Guide the students to	Circuit
	and give examples.	examples.	Simulation	schematic diagrams.	read and interpret	Simulation
			Software		schematic diagrams	Software,
	3.2 Explain standard symbols	Discuss standard	Scratch,	3.2 Identify standard		Schematic
	for electronic components.	symbols for electronic	(Tinkercad,	symbols for electronic	Guide the students to	Diagrams,
		components.	Fritzing),	components in circuit	identify standard	Books
	3.3 Explain the internal array		Schematic	diagrams.	symbols for electronic	
	connection of a breadboard.	Discuss the internal	Posters		components in circuit	
		array connection of a		3.3 Create a circuit diagram	diagrams.	
		breadboard.		for a simple robotic		
				system.	Assign students to	
					draw schematics for	
				3.4 Use breadboards to	simple circuits.	
				prototype circuits.		
					Supervise students in	
				3.5 Transition from a	soldering operation	
				breadboard prototype to a	and handling of	
				soldered circuit board.	soldering iron.	
GE	NERAL OBJECTIVE 4.0: Understand	Power Management and	d Safety in Robo	ptics	1	I
Week	Specific Learning Outcome	Teachers Activities	Learning	Specific Learning Outcome	Teachers Activities	Learning
			Resources			Resources
)	4.1 Explain voltage regulation	Discuss voltage	Troubleshoot	4.1 Select appropriate tools	Guide students how to	Soldering
	and current limiting in circuits.	regulation and current	ing Guide,		select proper tools to	Irons,
		limiting in circuits.	Component	4.2 Select appropriate	be used.	batteries D0
	4.2 Explain safety procedure in		Data Sheets,	power sources (e.g.,		power
	designing robots	Discuss safety	Videos on	batteries, power supplies)	Guide students how to	sources.
		practices (e.g.,	Common	for robotic systems.	select and use	Multimetre
	4.3 Explain safety procedures in	avoiding short circuits,	Circuit Issues		batteries and power	Bread Board
	handling tools.	handling components		4.3 Use multimetres to	supplies.	Vero Boards

		safely).		measure voltage, current,		
				and resistance.	Guide students how to	
					design and know the	
				4.4 Implement safety	required power for	
				practices to prevent short	their robotics project.	
				circuits, overheating, and		
				electrical hazards.	Demonstrate how to	
					select and use	
				4.5 Design power	batteries and power	
				distribution systems for	supplies.	
				multi-component robots.		
					Teach safety practices	
					(e.g., avoiding short	
					circuits, handling components safely).	
GENER	LAL OBJECTIVE 5.0: Build and troub	 achaot cimple alactronic	circuits for rob		components salely).	
10-12	5.1 Explain the procedure in	Discuss procedures in	Charts	5.1 Assemble a basic circuit	Supervise students as	Soldering
10-12	designing a circuit	designing a circuit	Videos	(e.g., LED blink, motor	they build and test	Irons,
			VIGCOS	control).	circuits.	Test Benches
	5.2 Explain the components	Discuss the				Multimeter
	required to perform the task.	components required		5.2 Diagnose common	Guide them in	Bread Boards,
		in designing a circuit		circuit issues (e.g., open	troubleshooting	Vero Boards,
	5.3 Explain the procedures in			circuits, short circuits).	common issues.	Jumper wires
	diagnosing and optimising a	Discuss the procedure				LED
	circuit.	in diagnosing and		5.3 Optimize circuits for		Motors
		optimising a circuit.		efficiency and reliability.		
				5.4 Document and present		
				a functional electronic		
				circuit for a robotic		
				application.		

PROGRAMME: NATIONAL TECHNICAL CERTIFICATE IN ENGINEERING CRAFT PRACTICE							
MODULE 5: Basic Sensors and Actuators Interfacing for Robotics				COURSE CODE:CRB215	CONTACT	HOURS:	
					72		
YEAR: 2	TERM: 1	PREREQUISITE:	Tł	Theoretical: 24 Hours			
				Practical: 48 Hours			
GOAL: This module is des	signed to teach stud	ents how to select, interface, and us	se sensors ir	n robotic systems, enabling them	i to gather data an	d	
implement feedback conti	rol.						
GENERAL OBJECTIVES:							
On completion of this mod	dule, the trainee sho	ould be able to:					
1. Understand the ro	le of sensors in rob	otics and their types.					
Understand the ro	le of actuators in ro	botics.					
3. Learn to interface	3. Learn to interface analog and digital sensors with microcontrollers.						
4. Develop skills in p	rocessing and interp	preting sensor data.					
5. Explore basic sens	or fusion technique	s (e.g., complementary filter).					

MODULE 5: Basic Sensors and Interfacing for Robotics				COURSE CODE: CRB215	CONTACT HOURS:	
YEAR: 2 TERM: 1 GOAL: This module is designed to teach students how to select, in		PREREQUISITE:		Theoretical: 24 Hours Practical: 48 Hours		
	ment feedback control.	students now to select, in	internace, and us			
	Theoretica	al Content			Practical Content	
GENE	RAL OBJECTIVE 1.0: Understand th	e role of sensors in robot	ics and their typ	es.		
Wee k	Specific Learning Outcome	Teachers Activities	Learning Resources	Specific Learning Outcome	Teachers Activities	Learning Resources
1	 1.1 Define what sensors are and why they are important in robotics. 1.2 Classify sensors based on their output (analog vs. digital). 1.3 Explain common sensors used in robotics (e.g., IR, ultrasonic, temperature). 1.4 Explain how sensors help robots interact with their environment. 1.5 Compare sensors based on their applications. 	Discuss Sensors, their importance and classes. Show examples of sensors (e.g., IR, ultrasonic) Discuss how sensors help robots interact with their environment.	Sensor Infographics, Books on Sensors (e.g., "Sensors for Mechatronic s"), Live Sensor Demos	 1.1 Identify common sensors used in robotics (e.g., IR, ultrasonic, temperature). 1.2 Test different sensors (e.g., IR, ultrasonic) and record their outputs. 1.3 Compare the performance of analog vs. digital sensors. 	Guide students on how to identify and test sensors Guide students on how to compare the performance of analog and digital sensors	Sensor Kits (Ultrasonic, IR, Temperature, Light)
Wee	RAL OBJECTIVE 2.0: Understand th Specific Learning Outcome	Teachers Activities	Learning	Specific Learning	Teachers Activities	Learning
k			Resources	Outcome		Resources
2	2.1 Explain actuators	Discuss actuators	Infographics,	2.1 Identify different	Guide students on	Actuators,

		can be connected to	Videos and	2.2 Connect actuators too		Arduino IDE
	2.3 Explain how to connect and	robots	slides.	perform a specific function	Guide students on	
	read data from actuators				how to read actuator	
				2.3 Write an Arduino code	data using serial	
				to activate an actuator to	monitor	
				perform a function		
G	ENERAL OBJECTIVE 3.0: Learn to in	nterface analog and digita	al sensors with r	microcontrollers.		
Wee	Specific Learning Outcome	Teachers Activities	Learning	Specific Learning	Teachers Activities	Learning
k			Resources	Outcome		Resources
3-5	3.1 Explain how to read analog	Discuss how to	Circuit	3.1 Connect digital sensors	Demonstrate how to	Microcontroller
	sensor data using an Arduino	connect sensors with	Diagrams,	with Arduino	connect and read data	s (Arduino),
	(e.g., potentiometer, light	interfaces	Library		from sensors.	Jumper Wires
	sensor).		Documentati	3.2 Write Arduino code to		Arduino Sensor
		Discuss steps in	on,	display sensor data on the	Provide coding	12C
	3.2 Explain how to Interface	troubleshooting	Interactive	serial monitor.	examples for students	SPI
	digital sensors with Arduino	common issues	Simulations		to practice.	
	(e.g., buttons, ultrasonic			3.3 Read analog sensor		
	sensors) with Arduino.			data using an Arduino (e.g.,		
				potentiometer, light		
	3.3 Explain how digital sensors			sensor).		
	can be connected using					
	interfaces			2.4 Debug if there is an		
	(e.g., I2C, SPI).			error.		
	3.4 Explain how to troubleshoot					
	common sensor interfacing					
	issues (e.g., incorrect wiring).					
G	ENERAL OBJECTIVE 4.0: Develop sl	kills in processing and int	erpreting senso	r data.		
Wee	Specific Learning Outcome	Teachers Activities	Learning	Specific Learning Outcome	Teachers Activities	Learning
k			Resources			Resources
6-8	4.1 Explain how raw sensor	Discuss how raw data	Data Logs,	4.1 Convert raw sensor	Guide students how to	Serial Monitors
	data can be converted into	can be converted and	Charts,	data into meaningful units	calibrate sensors and	Arduino IDE
	meaningful units	visualised	Slides,	(e.g., distance in cm,	filter noisy data.	Jumper wires

	(e.g., distance in cm,		Videos,	temperature in °C).		Arduino Uno
	temperature in °C).	Discuss how decision			Assign exercises to	
		are made using data.		4.2 Visualize sensor data	convert raw sensor	
	4.2 Explain how to visualize			using tools like serial	data into meaningful	
	sensor data using serial			monitors or graphs.	units.	
	monitors					
				4.3 Use sensor data to		
	4.3 Explain how to make			make decisions (e.g., stop if		
	decisions using sensor data			an obstacle is detected).		
G	ENERAL OBJECTIVE 5.0: Explore ba	sic sensor fusion techniq	ues (e.g., comp	ementary filter).		
Wee	Specific Learning Outcome	Teachers Activities	Learning	Specific Learning Outcome	Teachers Activities	Learning
k			Resources			Resources
9-12	5.1 Explain the line of code for a	Discuss how to build	Textbooks,	5.1 Build and program a	Supervise students as	IR Sensors,
	line-following robot using IR	and program robots	Manuals,	line-following robot using	they build and	Ultrasonic
	sensors.	(e.g., line-following,	Simulation	IR sensors.	program robots.	Sensor,
		obstacle avoidance).	videos,			Motors,
	5.2 Explain the steps involved in			5.2 Develop an obstacle-		Motor Drivers,
	developing an obstacle-	Discuss how to		avoidance robot using		Arduino Uno,
	avoidance robot using	connect IR and		ultrasonic sensors.		Arduino IDE,
	ultrasonic sensors.	ultrasonic sensors				Jumper wires,
				5.3 Simulate a sensor-		Batteries,
	5.3 Explain the steps in	Discuss the steps		based control system using		Chassis,
	designing circuits using	involved in developing		software tools (e.g.,		Switch,
	Tinkercad.	an obstacle-avoidance		Tinkercad).		
		robot using ultrasonic				
		sensors.		5.4 Present and		
				demonstrate a functional		
				robot that uses sensors for		
				control.		

PROGRAMME:	NATIONAL TECHNICAL CERTI	FICATE IN ENGINEERING CRAFT PI	RACTICE	
Module 6: Introduction to Kinematics		COURSE CODE: CRB226	CONTACT HOURS:	
				72
YEAR: 2	TERM: 2	PREREQUISITE:	Theoretical: 24 Hours	
			Practical: 48 Hours	
GOAL: This mode	le introduces students to th	e mathematical principles of robo	ot motion, focusing on forward and inverse k	kinematics, which are
essential for cont	rolling robotic arms and mot	pile robots.		
GENERAL OBJECT	IVES:			
On completion of	this module, the trainee show	uld be able to:		
1. Understar	nd what kinematics is and wh	y it's important in robotics.		
2. Learn how	robots move and how to de	scribe their motion.		
3. Explore ba	asic concepts of forward and	inverse kinematics.		
4. Understar	nd coordinate systems and ho	ow robots use them.		
5. Apply kine	ematic concepts to simple rol	potic projects.		

PROGR	AMME: NATIONAL TECHNICA	CERTIFICATE IN ENGINEER	RING CRAFT PRA	CTICE		
MODULE 6: Introduction to Kinematics				COURSE CODE:	CONTACT HOURS:	
YEAR: 2 TERM: 2			PREREQUISITI	Practical: 48 Hours		
GUAL:	This module is designed to provi	cal Contents with a foundat	tional understar		s, Practical Content	
					ractical Content	
	AL OBJECTIVE 1.0: Understand w		1		Taaahaya Aatiyitiaa	Looming
Week	Specific Learning Outcome	Teachers Activities	Learning Resources	Specific Learning Outcome	Teachers Activities	Learning Resources
1	 1.1 Define kinematics in simple terms (the study of motion without forces). 1.2 Explain how kinematics helps robots move and perform tasks. 1.3 Describe examples of kinematics in everyday life (e.g. robotic arms, drones). 1.4 Describe the difference between kinematics and dynamics. 1.5 Discuss why kinematics is important for designing robots. 	 explain the difference between kinematics and dynamics. Provide real-world examples (e.g., robotic arm motion). 	Robotic Arm Animation, Videos, Books, Slides	1.1 Identify differences between kinematics and dynamics.1.2 Identify the different kinematic motion performed by a robot arm.	Use animations to explain the difference between kinematics and dynamics. Provide real-world examples (e.g., robotic arm motion).	Robotic Arn Kits, 3D Printer Models.
GE	NERAL OBJECTIVE 2.0: Learn how	v robots move and how to	describe their m	otion.		
Week	Specific Learning Outcome	Teachers Activities	Learning Resources	Specific Learning Outcome	Teachers Activities	Learning Resources
	2.1 Explain the concept of degrees of freedom (DOF) in robots.	Discuss the derivation of forward kinematics for a 2-link planar arm.	Videos, Simulation, Graphing	2.1 Derive forward kinematics for a 2-link planar arm.	Guide students through the derivation of forward kinematics	Planar arn models, Markers,

			Exercises		for a 2-link planar arm.	Measurement
	2.2 Describe how joints (e.g.,	Use simulations to		2.2 Build a simple robotic		Tools
	revolute, prismatic) allow	demonstrate forward		arm and calculate its end-		
	robots to move.	kinematics for mobile		effector position.		
		robots.				
	2.3 Explain how wheels, legs, or					
	arms enable motion in different					
	robots.					
GEN	NERAL OBJECTIVE 3.0: Explore basi	c concepts of forward an	d inverse kinema	atics.	1	
Week	Specific Learning Outcome	Teachers Activities	Learning	Specific Learning Outcome	Teachers Activities	Learning
			Resources			Resources
	3.1 Define forward kinematics	Discuss forward and	Videos,	3.1 Design an inverse	Guide students	Graph Paper,
	(predicting where the robot will	inverse kinematics.	Slides,	kinematics for a 2-link	through the steps of	Robot Kit,
	move).		Posters,	planar arm using geometric	designing an inverse	Arduino Uno,
		Discuss how to	textbooks	methods.	kinematics for a 2-link	Ardiono IDE,
	3.2 Define inverse kinematics	achieve forward and			planar arm.	Jumper wires
	(finding how to move the robot	inverse kinematics.		3.2 Design a forward		Batteries
	to a specific position).			kinematics robot.	Guide students	2-Link Planar
					through the steps of	arms
	3.4 Use hands-on activities to				designing a forward	
	explore forward and inverse				kinematics robot.	
	kinematics.					
	NERAL OBJECTIVE 4.0: Understand				T	
Week	Specific Learning Outcome	Teachers Activities	Learning Resources	Specific Learning Outcome	Teachers Activities	Learning Resources
	4.1 Define a coordinate system	Explain physical	Virtual	4.1 Perform 2D	Guide students	Miniature
	(e.g., x, y, z axes).	models to	Robotics Lab,	transformations (e.g.,	through the steps to	Robotic
	(e.g., x, y, z axes).	demonstrate	CAD Models	translation, rotation) on	design physical	Systems,
	4.2 Differentiate between the	coordinate frames.	of Robot	graph paper.	models.	Robotic Arm
	robot's frame and the world		Joints,			Kits
	frame.	Discuss steps to	Interactive	4.2 Apply coordinate	Guide students	IXIC3
		achieve	Robot	systems to plan robot	through the steps to	
	4.3 Describe robot motion	transformations.	Motion	,	. .	
	4.3 Describe robot motion	transformations.	Motion	paths.	perform 2D	

using coordinate systems		Demos		transformation using	
(e.g., "Move to x=5, y=10").				graph paper.	
GENERAL OBJECTIVE 5.0: Apply kinematic	concepts to simple robo	tic projects.			
5.1 Explain the codes required	Guide students in	Virtual	5.1 Build and program a	Guide students in	Miniature
to perform a simple robot	simulating robot	Robotics Lab,	simple robotic arm to move	simulating robot	Robotic
motion	motion using scratch	CAD Models	to specific positions.	motion using	Systems,
	or Tinkercad	of Robot		software.	Robotic Arm
5.2 Outline steps involved in		Joints,	5.2 Use forward kinematics		Kits,
using Tinkercad for designing a	Provide feedback on	Interactive	to predict where a robot	Provide feedback on	Simulation
robot.	their simulations.	Robot	will move.	their simulations.	software
		Motion			
5.3 Outline the components		Demos	5.3 Use inverse kinematics		
required to design a simple			to control a robot arm to		
robot.			reach a target.		
			5.4 Simulate robot motion using software tools (e.g.,		
			Scratch, Tinkercad).		
			5.5 Present a project		
			demonstrating kinematic		
			principles.		

PROGRAMME: N	NATIONAL TECHNICAL CERT	FICATE IN ENGINEERING CRAFT PF	RACTICE			
Module 7: Introdu	ction to Robot Control Syst	ems	COURSE CODE: CRB237		CONTACT	HOURS:
					72	
YEAR: 2	TERM: 3	PREREQUISITE:	Tł	neoretical: 24 Hours		
				Practical: 48 Hours		
GOAL: This modu	le is designed to equip stude	ents with the knowledge of robot co	ontrol syste	ms		
GENERAL OBJECTI	VES:					
On completion of t	this module, the trainee sho	uld be able to:				
	-	and why they are important.				
2 Learn the basics	of open-loop and closed-loo	p control.				
3 Explore simple fe	edback mechanisms for rob	ots.				
4 Understand how	sensors and actuators work	together in control systems.				
5 Apply control co	ncepts to build and program	a simple robot.				

MODUI	E 7: Introduction to Robot Contro	l Systems		COURSE CODE: CRB237		CONTACT HOURS:	
YEAR: 2	TERM: 3		PREREQUISIT	E:	Theoretical: 24 Hours Practical: 48 Hours		
GOAL: 1	This module is designed to introdu	ce the trainee to the					
	Theoretica				actical	Content	
	AL OBJECTIVE 1.0: Understand what				1		T
Week	Specific Learning Outcome	Teachers Activities	Learning	Specific Learning	Teac	hers Activities	Learning
			Resources	Outcome			Resources
1	1.1 Define a control system in	Give examples (e.g.,	Block	1.1 Build a simple open-	Guid	e students using	Thermostats
	simple terms (e.g., a system	thermostat, self-	Diagram	loop control system (e.g., a		nples (e.g.	Motor
	that makes a robot do what you	driving car) to explain	Posters,	fan that turns on at a	therr	mostat, self-	Drivers,
	want).	control systems.	Control	specific time).		ng car) to explain	Sensors,
			Theory		cont	rol systems.	Control
	1.2 Explain why control systems	Discuss how control	Books,	1.2 Build a closed-loop			System Kits
	are important for robots (e.g.,	systems make robots	Videos on	control system (e.g., a	Guid	e students in	
	to move accurately, avoid	smarter.	Open vs	thermostat).	desig	gning a simple	
	obstacles).		Closed-Loop		cont	rol system.	
			Systems				
	1.3 Outline examples of control						
	systems in everyday life (e.g.,						
	thermostats, self-driving cars).						
	1.4 Describe the difference						
	between manual and automatic						
	control.						
	1.5 Explain how control systems						
	make robots smarter and more						
	efficient.						

Week	Specific Learning Outcome	Teachers Activities	Learning	Specific Learning	Teachers Activities	Learning
			Resources	Outcome		Resources
2	2.1 Define open-loop control	Discuss open-loop and	Block	2.1 Build and test an open-	Guide students in	DC Motors
	(e.g., robot moves without	closed-loop control	Diagram	loop control system (e.g., a	designing an open-	Microcontroll
	feedback).	with simple examples	Posters,	robot moving in a straight	loop and closed-loop	ers, Arduino
		(e.g. <i>,</i> fan vs.	Control	line).	control.	IDE, Jumper
	2.2 Define closed-loop control	thermostat).	Theory			wires
	(e.g., robot uses feedback to		Books,	2.2 Build and test a closed-	Guide students to	
	adjust its actions).	Give examples of open	Videos on	loop control system (e.g., a	identify examples of	
		and closed loop	Open vs	line-following robot).	open ad closed loop	
	2.3 Compare open-loop and	control in real life.	Closed-Loop		systems in real life.	
	closed-loop control with real-		Systems			
	world examples.					
	2.4 Explain the role of sensors					
	in closed-loop control.					
GE	NERAL OBJECTIVE 3.0: Explore sim	ple feedback mechanism	s for robots.	·		·
Week	Specific Learning Outcome	Teachers Activities	Learning	Specific Learning Outcome	Teachers Activities	Learning
			Resources			Resources
3-5	3.1 Explain the concept of	Discuss how feedback	Comparison	3.1 Build a line-following	Guide students on	Feedback
	feedback in control systems.	works in a line-	Charts,	robot that uses feedback to	designing ssa line-	Sensor
	3.2 Describe the difference	following robot.	Practical	adjust its path.	following robot.	Modules, Line
	between open-loop and closed-		Examples			Following
	loop control systems with	Discuss the steps in	(e.g. <i>,</i>	3.2 Test the robot's	Guide students in	Robot Kits
	examples.	programming a	Thermostat,	performance and optimize	programming a	
	examples.	feedback control	Motor	the feedback algorithm.	feedback control	
	3.3 Explain how feedback	system.	Control)		system.	
	mechanisms help improve the					
	accuracy and performance of	Illustrate the			Guide students to	
	robots.	difference between			compare two robotic	
	3.4 Demonstrate how sensors	open-loop and closed-			setups, one using an	
	5.4 Demonstrate now sellsors	loop systems using			open-loop system	

provide real-time feedback to	diagrams, explaining	(e.g., pre-programmed
control robotic movements.	how each system	movements) and
	operates and the	another using a
3.5 Program a simple feedback	absence or presence of	closed-loop system
loop using sensors and	feedback.	(e.g., sensor-driven
actuators in a robotic system		adjustments).
(e.g., maintaining a robot's	Demonstrate how	
balance or adjusting motor	sensors (e.g.,	Guide students to
speed).	ultrasonic or infrared	document how
3.6 Troubleshoot common	sensors) collect real-	feedback influences
issues in feedback-controlled	time data and how	performance.
robotic systems.	that data is processed	
	by the control system	Guide students to
	to adjust the robot's	connect a sensor (e.g.,
	actions.	ultrasonic) to an
		Arduino-controlled
	Provide a step-by-step	robot and write a
	tutorial on how to	simple program where
	write a feedback	the robot responds to
	control program using	real-time sensor input
	an Arduino or similar	(e.g., avoiding
	platform.	obstacles based on
	Provide students with	proximity detection).
	a troubleshooting	
	guide for common	Guide students to
	feedback-related	write and upload a
	issues, such as noisy	program to a robot
	sensor data, incorrect	that uses a feedback
	actuator responses, or	loop to adjust its
	delayed feedback.	movements. (e.g.,
		slowing down or
		stopping when
		approaching an

					obstacle). They will test the robot and observe how the feedback mechanism improves its operation. Guide students by given them a robot with a faulty feedback system and guide them to troubleshoot and fix the issue using the debugging steps provided (e.g., checking sensor connections, calibrating sensors, adjusting code logic).	
GF	NERAL OBJECTIVE 4.0: Understand	how sensors and actuat	ors work togeth	per in control systems		
Week	Specific Learning Outcome	Teachers Activities	Learning	Specific Learning Outcome	Teachers Activities	Learning
6.9	4.1 Evalain haw concern active	Disques how some	Resources	4.1 Duild a robat that stars	Cuido studente en	Resources
6-8	4.1 Explain how sensors gather information (e.g., distance,	Discuss how sensors and actuators interact	Feedback System	4.1 Build a robot that stops when it detects an obstacle	Guide students on how to connect	Test Benches, sensor kits,
	light, sound).	in a robotic system.	Simulations,	using ultrasonic sensors.	sensors and actuators	jumper wires,
			Case Studies		in a robotic system.	Arduin Uno,
	4.2 Describe how actuators	Explain how to build	(e.g., Line-	4.2 Program the robot to		Motor, motor
	perform actions (e.g., move	and test a feedback	Following	adjust its speed based on	Supervise students as	shield,
	wheels, rotate arms).	control system.	Robots)	sensor feedback.	they build and test a	battery.
			,		, feedback control	
	4.3 Explain the connection			4.3 Build a simple control	system.	

	between sensors, controllers,			system (e.g., robot that		
	and actuators.			stops when it hears a clap).		
				4.4 Program a robot to use sensor data to control actuators (e.g., avoid obstacles).		
GENER 9-12	AL OBJECTIVE 5.0: Apply control co	Discuss how to build and prog	ram a simple ro Videos on			Test Benches,
	 5.1 Explain steps to design a robot that uses open-loop control (e.g., move in a square pattern). 5.2 Explain steps to program a robot to use closed-loop control (e.g., follow a line using sensors). 5.3 Outline steps to improve robot performance (e.g., adjust speed based on sensor data). 5.4 Outline steps in simulating a control system using software 	and program a robot (e.g., line-following, obstacle avoidance).	PID Control, Step-by-Step Tutorials, Circuit Simulation Software	 5.1 Build and program a robot (e.g. line-following, obstacle avoidance). 5.2 Build a robot that uses open-loop control (e.g., move in a square pattern). 5.3 Program a robot to use closed-loop control (e.g., follow a line using sensors). 5.4 Simulate a control system using software tools (e.g., Scratch, Tinkercad). 	Supervise students as they build and program a simple robot. Guide students on how to debug the codes for errors.	Arduini Uno, Arduino IDE, jumper wires, batteries, switch, Tinkercad
	tools (e.g., Scratch, Tinkercad).					

PROGRAMME: NAT	IONAL TECHNICAL CER	TIFICATE IN ENGINEERING CRAFT P	RACTICE	
MODULE 8: Computer	Vision Basics		COURSE CODE: CRB318	CONTACT HOURS:
				72
YEAR: 3	TERM: 1	PREREQUISITE:	Theoretical: 24 Hours	
			Practical: 48 Hours	
GOAL: This module in	troduces students to th	he basics of computer vision and ho	w it can be used in robotics for tasks like obje	ct detection, navigation,
and manipulation.				
GENERAL OBJECTIVES	:			
On completion of this	module, the trainee sh	ould be able to:		
1. Understand w	hat computer vision is	and its role in robotics.		
2. Understand th	e basics of camera cali	bration and image transformations.		
3. Learn the basi	cs of image processing	and object detection.		
4. Explore how re	bots use vision to navi	gate and interact with their enviror	nment.	

MODUL	.E 8:			COURSE CODE: CRB318	CONTACT HOURS:	
YEAR: 3 TERM: 1 GOAL: This module introduces students to manipulation.			PREREQUISITE: the basics of computer vision and how it ca		E: Theoretical: 24 Hours Practical: 48 Hours it can be used in robotics for tasks like object detection	
		oretical Content		P	ractical Content	
GENER/	AL OBJECTIVE 1.0: 1.	Understand what computer vis	sion is and its re	ole in robotics.		
Week	Specific Learning Outcom	ne Teachers Activities	Learning Resources	Specific Learning Outcome	Teachers Activities	Learning Resources
1-3	 1.1 Define computer vision simple terms (e.g., teachin robots to "see"). 1.2 Explain how computer vision helps robots perfort tasks (e.g., object detection navigation). 1.3 Outline real-world applications of computer in robotics (e.g., self-drivin cars, robotic arms). 1.4 Describe the difference between human vision arr computer vision. 1.5 Explain why computer is important for the future robotics. 	ng relationship between computer vision and human vision. rr Discuss how computer vision helps robots "see" and interact with their environment vision ing ce nd	Image Processing Tutorials, Videos, Slides, Textbooks	 1.1 Use a camera to capture images and display them on a computer. 1.2 Use any image processing software (e.g. PictoBlox) to process and analyze an image characteristic and improve output. 	Guide students on how to use a camera to capture images. Guide students on the use of an image processing software to process image characteristics and improve output.	Cameras, Image Processing Software (PictoBlox). Computer

Week	Specific Learning Outcome	Teachers Activities	Learning	Specific Learning	Teachers Activities	Learning
			Resources	Outcome		Resources
4-6	2.1 Define camera calibration	Discuss how to	Hands-on	2.1 Design a code for image	Guide students on	Camera, Image
	and explain why it's important.	calibrate a camera and correct lens distortion.	Projects (e.g., Color	transformation.	how to calibrate a camera and perform	editing software,
	2.2 Explain how simple camera		Object	2.2 Perform image	image	Computer,
	calibration tasks can be done.	Discuss how to perform image	Detection), Al Vision	transformations using Image editing software (e.g.	transformations.	Microcontrolle r Batteries
	2.3 Explain image	transformations (e.g.,	Datasets,	PictoBlox).	Provide exercises for	
	transformations (e.g., rotation,	rotation, scaling).	Textbooks,		students to practice	
	scaling, translation).		Slides.		these tasks.	
	2.4 Explain how to align images					
	(e.g., match a robot's view to a map).					
	2.5 Outline how calibration and					
	transformations can improve					
	robot vision accuracy.					
GENER	AL OBJECTIVE 3.0: Learn the basics	of image processing and	object detection	1.		
Week	Specific Learning Outcome	Teachers Activities	Learning Resources	Specific Learning Outcome	Teachers Activities	Learning Resources
7-9	3.1 Explain how images are	Discuss how to resize,	Videos on	3.1 Resize, crop, and	Guide students on	Image
	represented digitally (e.g.,	crop, and convert	Image	convert images to	how to perform basic	processing
	pixels, grayscale, RGB).	images using software	Filtering,	grayscale using software	image processing	software
		(e.g. Corel draw)	Hands-on	(e.g. PictoBlox).	tasks.	(PictoBlox),
	3.2 Outline the steps to perform		Corel draw,			Camera.
	basic image processing tasks	Discuss steps in	Textbooks	3.2 Detect simple shapes	Guide students on the	
	(e.g., resizing, cropping,	outlining shapes, apply	Slides.	(e.g., circles, squares) in an	use of any image	
	converting to grayscale).	color and isolating images.		image.	processing tool (e.g. PictoBlox)	
	3.3 Outline simple shapes and	-				

	objects in images (e.g., circles, squares). 3.4 Outline steps to apply color filtering to isolate objects (e.g., detect a red ball).					
CEN	3.5 Outline steps to perform edge detection techniques (e.g., Canny edge detection). JERAL OBJECTIVE 4.0: Explore how			with their opvironment		
Week	Specific Learning Outcome	Teachers Activities	Learning Resources	Specific Learning Outcome	Teachers Activities	Learning Resources
10-12	 4.1 Explain how mobile robots use vision for navigation (e.g., following a line, avoiding obstacles). 4.2 Explain how robotic arms use vision to pick and place objects. 4.3 Explain how vision detect and track objects in real-time. 4.4 Outline the challenges of using vision in robotics (e.g., lighting, occlusions). 	Discuss examples of robots using vision for navigation (e.g., line- following, obstacle avoidance). Discuss the challenges of vision-based navigation (e.g., lighting, occlusions).	Self-Driving Car Simulation, Videos on Object Tracking, Textbooks, Slides.	 4.1 Build a robot that uses vision to follow a line or avoid obstacles. 4.2 Design a code to control robotic arm to pick and place objects using camera. 4.3 Design a robot using vision to perform objects tracking task 	Guide students on how to design a robot using vision for navigation (e.g., line- following, obstacle avoidance). Guide students on how to program the microcontrollers. Guide students on how to debug the code for errors.	Cameras, LiDAR, Arduino Uno, Arduino IDE, Jumper wires, Batteries, switch

PROGRAMME: NATION	AL TECHNICAL CERTI	FICATE IN ENGINEERING CRAFT PI	RACTICE		
MODULE 9.0: Basics of M	Motion Planning and	Go-To Goal	COURSE CODE: CRB329	CONTACT	HOURS:
				72	
YEAR: 3	TERM: 2	PREREQUISITE:	Theoretical: 24 Hours		
			Practical: 48 Hours		
GOAL: This module will i	ntroduce students to	the fundamental concepts of mo	ption planning and how robots navigate to sp	ecific locations or	follow
paths.					
GENERAL OBJECTIVES:					
On completion of this mod	dule, the trainee shou	ld be able to:			
1. Understand the ba	asics of motion planni	ing and its importance in robotics.			
2. Learn how robots	navigate to specific lo	ocations (go-to tasks).			
3. Explore path plan	ning algorithms (e.g.,	shortest path, obstacle avoidance).		
4. Understand the role of sensors and maps in motion planning.					
_	ning concepts to sim				
	0				

MODU	LE 9: Basics of Motion Planning an	d Go-To Goal		COURSE CODE: CRB329	CONTACT HOURS:	
YEAR: 3 TERM: 2 P GOAL: This module will introduce students to the fundamental conce		PREREQUISITE		Theoretical: 24 Hours Practical: 48 Hours		
GUAL:	Theoretica		ncepts of motio	n planning and now robots n	Practical Content	ns or follow paths
GENER	AL OBJECTIVE 1.0: Understand the		and Its Import	ance		
Week	Specific Learning Outcome	Teachers Activities	Learning Resources	Specific Learning Outcome	Teachers Activities	Learning Resources
1	 1.1 Define motion planning and explain its role in robotics. 1.2 Outline real-world applications of motion planning (e.g., self-driving cars, warehouse robots). 1.3 Explain why motion planning is important for autonomous robots. 1.4 Compare manual control vs. autonomous motion planning. 1.5 Outline the challenges of motion planning (e.g., dynamic environments, obstacles). 	Discuss how motion planning is used in robotics. Discuss how motion planning is applied to real world applications. Discus manual control and autonomous motion planning.	Videos, Slides, Textbooks, Planning Charts	 1.1 Design a simple robot and manually and autonomously controlled. 1.2 Assemble a simple robot. 	Guide students on how to design a robot that can be manually and autonomously controlled. Guide students on how to assemble a robot that can be controlled manually and autonomously.	Simulated Path Planning Tools, LiDAR Sensors, Ultrasonic Sensors Microcontroller, Batteries, Arduino IDE, Jumper wires.
GE Week	NERAL OBJECTIVE 2.0: Learn How Specific Learning Outcome	Teachers Activities	Learning	O-TO Tasks) Specific Learning	Teachers Activities	Learning
			Resources	Outcome		Resources
2-3	2.1 Define a go-to task (e.g., moving to a specific location).	Discuss what a go-to task is (e.g., moving to a specific location).	Demonstrati on of GPS and LiDAR in	2.1 Program a robot to move to a specific location using simple commands	Guide students in writing code for go-to tasks.	Obstacle Course Sensor-Based Navigation Kit

	2.2 Explain how robots use		Robots,	(e.g., move forward, turn		Micro controller,
	sensors and maps to navigate.	Discuss examples of	Animated	left).	Supervise students as	Battery, Jumper
		go-to tasks in real-	Path		they test and adjust	wires.
	2.3 Explain how a robot can	world robots (e.g.,	Planning	2.2 Test the robot's	their robots.	
	move to a specific location	delivery robots).	Examples,	accuracy in reaching the		
	using simple commands.		Slides	target location.	Guide students in the	
		Discuss how sensors			connection of the	
	2.4 Discuss the importance of	(e.g., ultrasonic, IR)		2.3 Optimize the robot's	different sensors.	
	accuracy and precision in go-to	and maps help robots		navigation performance		
	tasks.	navigate.		through iterative testing.		
GE	NERAL OBJECTIVE 3.0: Understan	d and Explore Path Planni	ing Algorithms			
Week	Specific Learning Outcome	Teachers Activities	Learning	Specific Learning Outcome	Teachers Activities	Learning
			Resources			Resources
4-6	3.1 Explain path planning and	Discuss path planning	Books (e.g.,	3.1 Design a simple path	Guide students in	Tinkercad,
	its goals (e.g., shortest path,	is and its goals (e.g.,	"Principles of	planning algorithm using	using software to plan	Microcontrollers,
	obstacle avoidance).	shortest path, obstacle	Robot	software (e.g., Scratch,	algorithm (eg. mBlock,	PictoBlox,
		avoidance).	Motion"),	PictoBlox, mBlocks,	PictoBlox, Tinkercad)	mBlocks
	3.2 Explain the basics of grid-		ROS	Tinkercad).		Jumper wires,
	based path planning.	Discuss examples of	Tutorials,			Batteries,
		path planning in real-	Algorithm			Arduino IDE,
	3.3 Outline the limitations of	world robots (e.g.,	Flowcharts			Scratch.
	obstacle avoidance in a robot	drones, autonomous				
		vehicles).				
		Discuss the basics of				
		grid-based path				
		planning.				
	NERAL OBJECTIVE 4.0: Understan		r •		I	1
Week	Specific Learning Outcome	Teachers Activities	Learning Resources	Specific Learning Outcome	Teachers Activities	Learning Resources
7-9	4.1 Explain the concept of a	Discuss how sensors	Mobile	4.1 Create a simple map of	Demonstrate how to	Mobile Robot
	map and how robots use it for	(e.g., ultrasonic, IR)	Robot	an environment (e.g., a	create a map and use	Kits, GPS,
		(- 0.,			it for navigation.	, -: -,

		Discuss how sensor	Live Demos	4.2 Program a robot to		Batteries,
	4.2 Explain how sensors (e.g.,	data is used to adjust	of Maze-	navigate the environment	Guide students in	Arduino IDE,
	ultrasonic, IR, LiDAR) help	the robot's path.	Solving	using sensor data and the	programming a robot	Sensors, LiDAR
	robots detect obstacles and in		Robots,	map.	to use sensor data and	
	mapping.	Discuss what a map is	Videos,		a map.	
		and how robots use it	Slides.	4.3 Test the robot's ability		
	4.3 Outline the challenges of	for navigation.		to avoid obstacles using		
	mapping and localization.			sensor feedback.		
GENER	AL OBJECTIVE 5.0: Apply motion p	lanning concepts to simp	le robotic proje	cts.		
10-12	5.1 Outline the steps in	Discuss steps taken to	Mobile	5.1 Design and program a	Supervise students as	Mobile Robot
	designing a robot that has the	build and program a	Robot	robot to navigate to a	they build and	Kits (LAFVIN),
	capability of motion planning.	robot for a go-to task.	Simulations,	specific location while	program their robots.	GPS Sensors,
			Live Demos	avoiding obstacles.		LiDAR, Battery,
	5.2 Explain the steps in	Discuss how the robot	of Maze-		Use software to	Jumper wires,
	simulating a sensor response	uses sensor data and	Solving	5.2 Simulate a motion	demonstrate motion	Microcontroller,
	and activity.	path planning	Robots,	planning system using	planning simulations.	Scratch,
		algorithms.	Slides.	software (e.g., Tinkercad,		Tinkercad.
	5.3 Outlie the steps taken to			Scratch, mBlock, PictoBlox).	Guide students in	
	optimize the robot's motion	Discuss how software			programming a robot	
	planning performance.	(Tinkercad, Scratch)			to follow a path and	
		can help simulate a			avoid obstacles.	
		robot navigating a				
		planned path.				
		Discuss how the				
		simulation helps test				
		and optimize the				
		robot's performance.				
		Discuss the				
		importance of testing				
		and iteration in				
		robotics.				
	1	1000103.				

PROGRAMME: NATIONAL TECHNICAL CERTIFICATE IN ENGINEERING CRAFT PRACTICE						
MODULE 10: CAD Design and 3D Printing for Robotics			COURSE CODE: CRB 330	CONTACT HOURS:		
				72		
YEAR: 3	TERM: 3	PREREQUISITE:	Theoretical: 24 Hours			
			Practical: 48 Hours			
GOAL: This modu	le will introduce students to	the basics of Computer-Aided Des	ign (CAD) and 3D printing, which are essenti	al skills for designing and		
prototyping robot	tic components					
GENERAL OBJECT	IVES:					
On completion of	this module, the trainee sho	uld be able to:				
1. Understar	1. Understand the basics of CAD design and its importance in robotics.					
2. Learn to c	2. Learn to create 3D models of robotic components using CAD software.					
Explore th	3. Explore the principles of 3D printing and its applications in robotics.					

MODUL	.E 10:			COURSE CODE: CRB 330	CONTACT HOURS:	
YEAR: 3			PREREQUISIT	:	Theoretical: 24 Hours Practical: 48 Hours	
	This module will introduce students ping robotic components	s to the basics of Comput	er-Aided Design	(CAD) and 3D printing, whic	h are essential skills for de	esigning and
	Theoretical	Content			Practical Content	
GENER/	AL OBJECTIVE 1.0: Understand the I	basics of CAD design and	its importance ir			r
Week	Specific Learning Outcome	Teachers Activities	Learning Resources	Specific Learning Outcome	Teachers Activities	Learning Resources
1-4	1.1 Define CAD and explain its role in robotics.	Discuss the interface and tools of CAD software.	CAD Software Tutorials,	1.1 Create a simple 3D model (e.g., a cube or cylinder).	Demonstrate the interface and tools of CAD software.	CAD Software, Computer.
	1.2 Outline real-world		Slides			
	applications of CAD in robotics	Discuss the steps in	Videos.		Guide students in	
	(e.g., custom parts, prototypes).	creating a 3D model.			creating their first 3D model.	
	1.3 Outline the advantages of					
	using CAD for robotic design					
	(e.g., precision, customization).					
GE	NERAL OBJECTIVE 2.0: Learn to crea	ate 3D models of robotic of	components usir	ng CAD software		
Week	Specific Learning Outcome	Teachers Activities	Learning	Specific Learning	Teachers Activities	Learning
			Resources	Outcome		Resources
5-8	2.1 Explain the interface and	Discuss how to design	Step-by-Step	2.1 Design a basic robotic	Guide students on	Digital Callipers,
	tools of CAD software (e.g.,	basic robotic	Guides,	component (e.g., a gear or	how to design basic	3D Modelling
	SolidWorks, Fusion 360).	components using	Video	bracket).	robotic components.	Tools, Computer.
		CAD software.	Tutorials on			
	2.2 Outline the steps in creating		CAD design,	2.2 Export the 3D model in	Supervise students as	
	basic 3D models (e.g., gears, brackets, chassis).		Slides.	STL format for 3D printing.	they export their 3D models.	
	2.3 Explain the steps in					

	exporting 3D models in formats suitable for 3D printing (e.g., STL files					
GE	NERAL OBJECTIVE 3.0: Explore the p	principles of 3D printing a	nd its applicatio	ns in robotics		
Week	Specific Learning Outcome	Teachers Activities	Learning	Specific Learning Outcome	Teachers Activities	Learning
			Resources			Resources
9-12	3.1 Explain how 3D printers	Discuss how to set up	Videos on 3D	3.1 Set up and calibrate a	Gude students on how	3D Printers, PLA
	work (e.g., FDM, SLA).	and calibrate a 3D	Printing	3D printer.	to set up and calibrate	Filaments,
		printer.	Process,		a 3D printer.	Computer.
	3.2 Outline materials used in 3D		Infographics	3.2 Print a simple object		
	printing (e.g., PLA, ABS).		on Additive	(e.g., a keychain or small	Supervise students as	
			Manufacturi	figurine).	they print their first	
	3.3 Explain the limitations and		ng, Slides		object.	
	challenges of 3D printing (e.g.,		_			
	layer resolution, material					
	strength).					

LIST OF EQUPMENT

Hardware Required for 60 Students

Com	puters & Electronics	
SN	Item	Quantity
1	Laptops (for programming, simulations)	30 (shared in pairs)
2	Microcontrollers (Arduino)	60 (1 per student)
3	Breadboards	60
4	Power Supplies (5V, 12V)	30 (shared in pairs)
5	Sensors (Ultrasonic, IR, Temperature, Light)	120 (2 per student)
6	Actuators (Servos, DC Motors)	120 (2 per student)
7	LiDAR Sensors	10 (for demonstrations)
8	Encoders	30 (shared in pairs)
9	Multimeters	30 (shared in pairs)
10	Oscilloscopes	10 (for lab sessions)
11	Soldering Stations	10
12	Resistors, Capacitors, Transistors	600 pieces each
13	Integrated Circuits (ICs)	120 (for circuit experiments)
14	LEDs	600 (10 per student)
Robo	otic Kits & Components	
1	Robotic Arm Kits	20 (shared in groups of 3)
2	Line Following Robot Kits	20 (shared in groups of 3)
3	Mobile Robot Kit (LAFVIN)	30 (shared in pairs)
4	Coding Box	10
5	Feedback Sensor Modules	30
6	3D Printed Components (for assembly)	As required
Cont	rol & Measurement Tools	
1	Digital Calipers	10
2	Protractors	20
3	Graph Paper	60
4	Hand Tools (Screwdrivers, Pliers, Wire Cutters)	30 sets
Netv	vorking & Peripherals	

1	WiFi Routers (for IoT applications)	5		
2	USB Cables (for microcontroller connection)	60		
3	Projectors	5		
4	Whiteboards	5		
3D P	3D Printing & CAD Equipment			
1	3D Printers	10		
2	PLA Filaments (for printing)	20 spools		
3	Mechanical Assembly Tools (Screw Sets, Bolts)	30 sets		

Software Required for 60 Students

SN	Software	Purpose
Prog	ramming & Development	
1	Arduino IDE	Coding for microcontrollers
2	Python	Robotics programming & simulations
3	PictoBlox	
4	C++	Embedded systems programming
Simu	lation & Control	
1	ROS (Robot Operating System)	Robot simulation & motion planning
2	GeoGebra	Mathematical calculations & transformations
3	LabVIEW	Control system simulations
4	Tinkercad	Basic electronic simulations
5	Scratch	Beginner-level coding simulations
Com	outer Vision & Al	
1	OpenCV	Image processing for robots
2	TensorFlow	Machine learning in robotics
CAD	& 3D Printing	
1	SolidWorks	3D modelling of robotic components
2	Fusion 360	CAD design & simulations
3	Cura	3D slicing software for printing
4	AutoCAD	Technical drawings & blueprints

ZERO DRAFT LIST OF PATICIPANTS (February 2025)

SN	NAME	Orgnisation	Email
1	Engr. ADK Muhammad	Project Manager (IDEAS)	adkmuhamad@gmail.com
2	Oluwagbenga Monday Karimu	Uniccon Group of Companies, Abuja	karimuoluwagbengamonday@gmail.com
4	Muhammad Bilyaminu Musa	NBTE, Kaduna	mahoganybm@gmail.com

CRITIQUE LIST OF PATICIPANTS (February 2025)

SN	NAME	Orgnisation	Email
1	Engr. ADK Muhammad	Project Manager (IDEAS)	adkmuhamad@gmail.com
2	Prof. Col AS Imam	NDA	
3	Gerald Ojim	Cosmopolitan University	Ojimgerald@gmail.com
4	Muhammad M Musa	NBTE, Kaduna	muhammadwaziri@msn.com

VALIDATION LIST OF PATICIPANTS (February 2025)

SN	NAME	Orgnisation	Email
1	Engr. ADK Muhammad	Project Manager (IDEAS)	adkmuhamad@gmail.com
2	Prof. Col AS Imam	NDA	
3	Gerald Ojim	Cosmopolitan University	Ojimgerald@gmail.com
4	Muhammad M Musa	NBTE, Kaduna	muhammadwaziri@msn.com

World Bank – National Board for Technical Education, Nigeria Project on Innovation Development and Effectiveness in the Acquisition of Skills (IDEAS)

Plot B, Bida Road, PMB 2239,Kaduna ideasworldbankproject@nbte.gov.ng Tel: +234 (0) 802 4728 042